

Product Description

The smart motorstarter function is a softstart, reversal and protection of 3-phase asynchronous motors. Overcurrent is detected when the set current is exceeded longer than 2 sec . Direction reversal takes place via relay switching. The relays are de-energised at this. This ensures a long service life.

Function Diagram

Your Advantages

- Up to 6 function in one unit
- Reversing anticlockwise
- Reversing clockwise
- Softstart
- Softstop
- Current monitoring or motor protection
- Galvanic separation via forcibly guided contacts contact distance min. 0.5 mm
- 80 \% less space
- Simple and time-saving commissioning as well as user-friendly operation through setting via potentiometers on absolute scales
- Blocking protection
- Hybrid relay combines benefits of relay technology with
non-wearing semiconductor technology
- High availablility by
- Temperature monitoring of semiconductors
- High withstand voltage up to 1500 V
- Load free relay reversing function
- As option with disabling current monitoring

Features

- According to IEC/EN 60 947-4-2
- To reverse 3 phase motors from 90 W to 750 W resp. 550 W to 4 kW at AC 400 V
- 2-phase softstart
- Max. 4 potentiometer für setting of starting torque, deceleration torque, softstart /-stop, overcurrent limit or rated motor current
- 4 LEDs for status indication
- Reversing with relays without current, softstart, softstop with thyristor
- Galvanic separated 24 V -inputs for clockwise- and anticlockwise
- Reset button on front
- Connection facility for external reset button
- Relay indicator output for operation
- Indicator output at customers specification (on request)
- Galvanic separation between control circuit and power circuit
- Width: 22.5 mm

Approvals and Markings

> *) see variants

Applications

- Reversing operation for door and gate controls, bridge drives and lifting applications with monitoring of blockage
- Conveyor systems with monitoring of blockage
- Actuating drives in process controls with blockage monitoring

Circuit Diagram

Connection Terminals
Terminal designation Signal description A1 (+) Auxiliary voltage + DC 24 V A2 Auxiliary voltage 0 V R+ Control input clockwise L+ Control input anti-clockwise NE Earth connection control input MAN Input for remote reset RES Output for remote reset $11,12,14$ Indicator relay for operation L1 Phase voltage L1 L2 Phase voltage L2 L3 Phase voltage L3 T1 Motor connection T1 T2 Motor connection T2 T3 Motor connection T3

Function

Soft start
Two motor phases are impacted through thyristor phase-fired control to allow a steady increase of the currents. The motor torque behaves in the same manner when ramping up. This ensures that the drive can start without jerking and the drive elements are not damaged. Starting time and starting torque can be adjusted via rotary switch.

Softstop (variant/1_ _)
The softstop function shall extend the natural running down time of the drive to also prevent jerky stopping.
The deceleration time is set with rotary switch ton, the running-down torque with rotary switch $\mathrm{M}_{\text {off }}$.

Motor protection (variant /1__)

The thermal load of the motor is calculated using a thermal model. The nominal motor current can be adjusted via potentiometer I_{e}. To calculate the thermal load the current is measured in phase T3.
A symmetric current load of all 3 phases of the motoris assumed for flawless functioning. When the trigger value - stored in the trigger characteristics -, is reached, the motor is switched off and the device switches to fault 8. The fault can be acknowledged via the reset button or reset input.
Attention: The data of the thermal model is cleared through reset or
 voltage failure. In this case, the user must provide adequate cooling time of the motor.

Phase failure

To make sure the motor is not loaded with asymmetric currents, a check takes place during motor start whether phases L1, L2 and L3 are present. If one or several phases are absent, the device switches to fault 4. The fault can be acknowledged via the reset button or reset input.

Motor current protection (variant /0_ _)

To ensure blocking protection is in place, the motor current is monitored in T3. The switching threshold can be adjusted via potentiometer $I_{\max }$. In the event of overcurrent, the power semiconductors deactivate and the signal relay for normal operation is reset. The red "ERR" LED flashes code 5. This status is stored. The fault can be acknowledged by switching the auxiliary voltage off / on, operating the reset button or selecting the reset control input.

Motor connection (variant /_0_)

In off state or fault condition the motor terminals are isolated from the mains voltage by a 4 pole. forcibly guided contact relay. The contact opening is min .0 .5 mm .

Control inputs

Clockwise rotation and anticlockwise rotation can be selected via two control inputs. The input signal detected first is executed if both inputs are selected simultaneously. After the detected signal is cancelled, the rotational direction is reversed via the soft start function.
The control inputs have a common isolated ground connection NE.

Signalling output "Ready"

Contact $11 / 14$ is closed if no device fault is present.

Indication

green LED "ON": permanent on - auxiliary supply connected
yellow LED "R": permanent on - clockwise,
power semiconductors bridged
flashing - clockwise, ramp operation
yellow LED "L": permanent on - anticlockwise, power semiconductors bridged
red LED "ERROR": flashing - Error

1*)	Overtemperature on semiconductors
2^{*}	- Wrong mains freqency
3*)	- Phase reversal detected
4*)	- min. 1 phase is missing
5*)	- Motor overcurrent detected
6*)	- Mains isolating relay not disconnected
7*)	- Incorrect temperature measurement circuit
8*)	- Motor protection has responded

$1^{*)}-8^{\star)}=$ Number of flashing pulses in sequence

Reset Function

2 options are available to acknowledge the fault

Manual (reset button):

Acknowledgement is performed by operating the reset button at the front of the device. If the button is still actuated after 2 seconds, the device resumes the fault state.

Manual (remote acknowledgement):

Remote acknowledgement can be realised by connecting a button (N/O contact) between the terminals MAN and RES. Acknowledgement is triggered as soon as the contact of the button closes. If the button is still actuated after 2 seconds, the device resumes the fault state since a defect in the acknowledgement circuit cannot be ruled out.

Setting Facilities

Rotary switch $M_{\text {on }}$: - Starting torque at softstart 30 ... 80 \%
Rotary switch $\mathrm{M}_{\text {off }}\left(\right.$ variant / 1_{-}): - Deceleration torque at softstop 80 ... 30 \%
Rotary switch $\mathrm{t}_{\text {on }}$ / $\mathrm{tofft} \quad$ - Start / deceleration ramp $1 \ldots 10 \mathrm{~s}$
Rotary switch $\mathrm{t}_{\text {on }} / \mathrm{t}_{\text {off }}$ (variant/2__): - Start / deceleration ramp $0 \ldots 1 \mathrm{~s}$
Rotary switch $I_{\max }\left(v a r i a n t / _0\right):-$ Motor current monitoring $3 \ldots 30 A_{\text {eff }}$ resp. 5 ... $50 \mathrm{~A}_{\text {eff }}$
Rotary switch I_{e} (Variante / __1): - Nom. motor current $0.5 A_{\text {eff }} \ldots 2.0 A_{\text {eff }}$ resp. 1.6 $\mathrm{A}_{\text {eff }} \ldots 9.0 \mathrm{~A}_{\text {eff }}$

Setting of start / deceleration ramp

Set-up Procedure

1. Connect motor and device according to application example. A clockwise rotating field is assumed for operation. A anti-clockwise rotating field triggers a fault message.
2. Turn rotary switch $t_{\text {on }} / t_{\text {off }}$ fully clockwise, $M_{\text {on }}$ e. g. $M_{\text {off }}$ fully anticlockwise and rotary switch $I_{\max }$ e. g. I_{e} of the requrired current.
3. Connect voltage and starting via input R- or softstop L-.
4. The starting time is set by turning the rotary switch ton anti-clockwise and the starting torque is set by turning the rotary switch $\mathrm{M}_{\text {on }}$ clockwise to the desired value. If set correctly, the motor shall swiftly accelerate to the nominal speed.

Safety Notes

Attention!

- Never clear a fault when the device is switched on.
- The user must ensure that the device and the necessary component are mounted and connected according to the locally applicable regulations and technical standards (VDE, TÜV,BG)
- Adjustmentsmayonlybecarriedoutbyqualifiedspecialiststaffand the applicable safety rules must be observed.
- After a short circuit the motor starter is defective and has to be replaced (Assignment type 1).
- Group supply:
- If several motor starters are protected together, the sum of the motor currents must not exceed 25 A.
- For reliable operation the auxiliary supply DC 24 V has to be continuously available during operation and should only be switched off not before 1 sec after the load voltage has been disconnected. Voltage dips of the auxiliary supply with load on Output T1, T2, T3 can lead to higher wearing of the relays or even to damage of the device.

Mounting Notes

The phase current in the device is measured with a hall effect sensor. Due to this principle also magnetic fields next to the sensor may have an influence. When designing circuits with this motorstarter components that generate magnetic fields like contactors, transformers, high current wires should not be placed close to the sensor.

Technical Data

	Rated current 2 A	Rated current 9 A
Nominal voltage L1/L2/L3:	$3 \mathrm{AC} 200 . . .480 \mathrm{~V} \pm 10 \%$	
Nominal frequency:	$50 / 60 \mathrm{~Hz}$, automatic detection	
Auxiliary voltage:	DC 24 V ¹0\%	
Max. nominal motor power at AC 400 V :	0.75 kW	4 kW
Min. nominal motor power:	90 W	550 W
Operating mode:	AC 51	
Surge current:	$200 \mathrm{~A}(\mathrm{tp}=20 \mathrm{~ms})$	
Load limit integral:	$200 \mathrm{~A}^{2} \mathrm{~s}(\mathrm{tp}=10 \mathrm{~ms})$	
Peak reverse voltage:	1500 V	
Overvoltage limiting:	AC 550 V	
Leakage current in off state:	$<3 \times 0.5 \mathrm{~mA}$	
Starting voltage:	$30 . . .80 \%$	
Start / deceleration ramp:	$1 \ldots 10 \mathrm{~s}$	
Start / deceleration ramp variant/2_ ; /3_ :	$0 \ldots 1 \mathrm{~s}$	
Consumption:	2 W	
Switchover delay time:	250 ms	
Start up delay for master tick:	max. 100 ms	
Release delay for master tick:	max. 50 ms	
Overcurrent measuring device:	AC $1 \ldots 12 \mathrm{~A}$ at variant / 0	AC 5 ... 50 A at variant/_ 0
I_{e} nominal motor current:	0.5 A ... 2.0 A at variant /__1	1.6 A ... 9.0 A at variant /__1
Measuring accuracy:	$\pm 5 \%$ of end of scale value	
Measured value update time at 50 Hz : at 60 Hz :	$100 \mathrm{~ms}$$83 \mathrm{~ms}$	
Motor protection $\mathrm{I}_{\mathrm{e}} 0.5 \mathrm{~A}$ to 2.0 A : $I_{\text {e }} 1.5 \mathrm{~A}$ to 6.8 A : Ie 6.9 A to 9.0 A:	Class 10 A	Class 10 A Class 5
Electronically, without thermal memory		

Reset:
manual
Short circuit strength
max. fuse rating:
Assignment type:
Electrcal life:
25 A gG / gL IEC/EN 60 947-5-1

Inputs

Control input right, left:	DC 24 V
Rated current:	4 mA
Response value ON:	DC $15 \mathrm{~V} \ldots 30 \mathrm{~V}$
Response value OFF:	DC $0 \mathrm{~V} \ldots 5 \mathrm{~V}$
Connection:	polarity protected diode
Manuel:	DC 24 V
	(connect button on terminals
	"MAN" and "RES")
RES:	DC 24 V , semiconductor, short circuit
	proof, rated continuous current 0.2 A
	programmable at customers specification
	(on request)

Indicator Outputs

Ready:
Contact:
Switching capacity
to AC 15
NO contact:
NC contact:
Thermal current $I_{t h}$:
Electrical life
to AC 15 at 3 A, AC 230 V :
Mechanical life:
Permissible switching
frequency:
Short circuit strength
max. fuse rating:

Changeover contact $250 \mathrm{~V} / 5 \mathrm{~A}$
1 changeover contact

$3 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}$	IEC/EN $60947-5-1$		
$1 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}$	IEC/EN 60 947-5-1		
5 A			2×10^{5} switch. cycles IEC/EN 60 947-5-1
:---			
30×10^{6} switching cycles			
1800 switching cycles/h			
$4 \mathrm{~A} \mathrm{gG} \mathrm{/} \mathrm{gL}$			

Technical Data

General Data

Device type:
Operating mode:
Temperature range:
Operation:
Storage:
Relative air humidity:
Altitude:
Clearance and creepage distances
Rated insulation voltage:
overvoltage category /
contamination level
between control input- ,
auxiliary voltage and
Motor voltage respectively
indicator contact:
Overvoltage category:
EMC
Interference resistance
Electrostatic discharge (ESD):
HF-irradiation
80 MHz ... 1.0 GHz :
1.0 GHz ... 2.5 GHz :
2.5 GHz ... 2.7 GHz:

Fast transients:
Surge voltage
between
wires for power supply:
between wire and ground:
HF-wire guided:
Voltage dips:
Interference emission
Wire guided:
Radio irradiation:
Degree of protection:
Housing:
Terminals:
Vibration resistance:
Climate resistance:
Wire connection:
Screw terminal
(fixed):
Control terminals
Cross section:
Power terminals
Cross section:

Insulation of wires or
sleeve length:
Fixing torque:
Wire fixing:
Mounting:
Weight:

Hybrid Motor Controller H1B
Continuous operation
$0 \ldots+60^{\circ} \mathrm{C}$ (see derating curve)
$-25 \ldots+75^{\circ} \mathrm{C}$
93% at $40^{\circ} \mathrm{C}$
< 1.000 m

500 V

III

8 kV (air)
$10 \mathrm{~V} / \mathrm{m}$
$3 \mathrm{~V} / \mathrm{m}$
$1 \mathrm{~V} / \mathrm{m}$
2 kV

1 kV
2 kV
10 V
IEC/EN 61 000-4-5
IEC/EN 61 000-4-5
IEC/EN 61 000-4-6
IEC/EN 61 000-4-11
Limit value class B IEC/EN 60 947-4-2 Limit value class B IEC/EN 60 947-4-2

IP 40	IEC/EN 60529
IP 20	IEC/EN 60529
Amplitude 0.35 mm	
frequency $10 \ldots 55 \mathrm{~Hz}$, IEC/EN 60 068-2-6	
0 / 060 / 04	IEC/EN 60 068-1

$1 \times 0.14 \ldots 2.5 \mathrm{~mm}^{2}$ solid or stranded wire with sleeve
$1 \times 0.25 \ldots 2.5 \mathrm{~mm}^{2}$ solid or stranded wire with sleeve

8 mm
0.5 Nm
captive slotted screw
DIN rail IEC/EN 60715
220 g
Dimensions

UL-Data

Standards:

for all products:

- U.S. National Standard UL508, $17^{\text {th }}$ Edition
- Canadian National Standard - CAN/CSA-22.2 No. 14-13,12 ${ }^{\text {th }}$ Edition

with restrictions at motor switching power:

- ANSI/UL 60947-1, 3 ${ }^{\text {rd }}$ Edition (Low-Voltage Switchgear and Controlgear Part1: General rules)
- ANSI/UL 60947-4-2, ${ }^{\text {st }}$ Edition (Low-Voltage Switchgear and Controlgear Part 4-2: Contactors and Motor-Starters - AC Semiconductor Motor Controllers and Starters)
- CAN/CSA-C22.2 No. 60947-1-07, $1^{\text {st }}$ Edition (Low-Voltage Switchgear and Controlgear - Part1: General rules)
- CSA-C22.2 No. 60947-4-2-14, $1^{\text {st }}$ Edition (Low-Voltage Switchgear and Controlgear - Part 4-2: Contactors and Motor-Starters - AC Semiconductor Motor Controllers and Starters

Motor data:

UL 508, CSA C22.2 No. 14-13
3 AC 200 ... 480 V,
3-phase, 50 / 60 Hz up to 7.6 FLA, 45.6 LRA at $40^{\circ} \mathrm{C}$ up to 4.8 FLA, 28.8 LRA at $50^{\circ} \mathrm{C}$
up to 2.1 FLA, 12.6 LRA at $60^{\circ} \mathrm{C}$
UL 60947-4-2, CSA 60947-4-2
3 AC 200 ... 300 V,
3-phase, 50 / $60 \mathrm{~Hz}: \quad u p$ to 7.6 FLA, 45.6 LRA at $40^{\circ} \mathrm{C}$ up to 4.8 FLA, 28.8 LRA at $50^{\circ} \mathrm{C}$ up to 2.1 FLA, 12.6 LRA at $60^{\circ} \mathrm{C}$
3 AC 301 ... 480 V,
3-phase, 50 / $60 \mathrm{~Hz}: \quad u p$ to 2.1 FLA, 12.6 LRA at $60^{\circ} \mathrm{C}$
Motor protection
I 1.5 A bis 6.8 A: Class $10 / 10 \mathrm{~A}$
e 6.9 A bis 9.0 A: Class 5
Electronically, without thermal memory
Reset: manual
Indicator output relay: 5 A 240 V ac Resistive
Wire connection: $\quad 60^{\circ} \mathrm{C} / 75^{\circ} \mathrm{C}$ copper conductors only
Connections
A1+, A2, X1+, X2, MAN,
RES, NE, 11, 12, 14 :
L1, L2, L3, T1, T2, T3:
AWG 22-14 Sol/Str Torque
3.46 Lb-in (0.39 Nm)

AWG 30-12 Str Torque 5-7 Lb-in
(0.564-0.79 Nm)

Additional Notes:

- This device is intended for use on supply systems with a maximum voltage from phase to ground of 300 V (e.g. for a three phase-four wire system $277 / 480 \mathrm{~V}$ or on a three phase-three wire systems of 240 V), rated impulse withstand voltage of max. 4 kV
- Suitable for use on a circuit capable of delivering not more than 5000 rms symmetrical Amperes, 480 Volts maximum when protected by class CC, J or RK5 fuse rated maximum 20 A
- For use in pollution degree 2 Environment or equivalent
- The control circuits of this device shall be supplied by an isolated 24 Vdc power supply which output is protected with a fuse rated max. 4 A dc
- For installations according to Canadian National Standard C22.2 No. 14-13 (cUL Mark only) and supply voltages above 400V:
- Transient surge suppression devices shall be installed on the line side of this equipment and shall be rated 240 V (phase to ground), 415 V (phase to phase), suitable for overvoltage category III, and shall provide protection for a rated impulse withstand voltage peak of 4 kV
- Transient surge suppression devices shall be installed on the line side of this equipment and shall be rated 277 V (phase to ground), 480 V (phase to phase), suitable for overvoltage category III, and shall provide protection for a rated impulse withstand voltage peak of 4 kV

Technical data that is not stated in the UL-Data, can be found in the technical data section.

Characteristics

Derating curve:
Rated continuous current depending on ambient temperature and distance Enclosure without ventilation slots

Standard Types

UG 9256.11/010/61 3 AC $200 \ldots 480$ V 9.0 A 1 ... 10 s

Article number:

- Nominal voltage:
- Nominal current:
- Ramp time:
- Control input R, L
- With softstart
- Without mains isolating
- With overcurrent protection
- Width:

UG 9256.11/101 3 AC $200 \ldots 480 \mathrm{~V} 2.0$ A $1 \ldots 10 \mathrm{~s}$
Article number:

- Nominal voltage:
- Nominal current:
- Ramp time:
- Control input R, L
- With softstart / softstop
- With mains isolating
- With motor protection
- Width:
22.5 mm

Available Variantes

UG 9256.11/61	3AC $200 . . .480 \mathrm{~V}$	9 A	$1 \ldots 10 \mathrm{~s}$	0063850
UG 9256.11/001/61	3AC $200 . . .480 \mathrm{~V}$	9 A	$1 \ldots 10 \mathrm{~s}$	0065668
UG 9256.11/010/61	3AC $200 . . .480 \mathrm{~V}$	9 A	$1 \ldots 10 \mathrm{~s}$	0064445
UG 9256.11/011/61	3AC $200 . . .480 \mathrm{~V}$	9 A	$1 \ldots 10 \mathrm{~s}$	0066274
UG 9256.11/100/61	3AC $200 . . .480 \mathrm{~V}$	9 A	$1 \ldots 10 \mathrm{~s}$	0063851
UG 9256.11/101/61	3AC $200 . . .480 \mathrm{~V}$	9 A	$1 \ldots 10 \mathrm{~s}$	0065669
UG 9256.11/110/61	3AC $200 . . .480 \mathrm{~V}$	9 A	$1 \ldots 10 \mathrm{~s}$	0064446
UG 9256.11/111/61	3AC $200 . . .480 \mathrm{~V}$	9 A	$1 \ldots 10 \mathrm{~s}$	0067440
UG 9256.11/140/61	3AC $200 . . .480 \mathrm{~V}$	9 A	$1 \ldots 10 \mathrm{~s}$	0067173
UG 9256.11/200/61	3AC $200 . . .480 \mathrm{~V}$	9 A	$0 \ldots 1 \mathrm{~s}$	0065863
UG 9256.11/201/61	3AC $200 . . .480 \mathrm{~V}$	9 A	$0 \ldots 1 \mathrm{~s}$	0066613
UG 9256.11/210/61	3AC $200 \ldots 480 \mathrm{~V}$	9 A	$0 \ldots 1 \mathrm{~s}$	0068267
UG 9256.11/231/61	3AC $200 . . .480 \mathrm{~V}$	9 A	$0 \ldots 1 \mathrm{~s}$	0067142
UG 9256.11/311/61	3AC $200 . . .480 \mathrm{~V}$	9 A	$0 \ldots 1 \mathrm{~s}$	0066327
UG 9256.11/411/61	3AC $200 . . .480 \mathrm{~V}$	9 A		0067141
UG 9256.11/010	3AC $200 \ldots 480 \mathrm{~V}$	2 A	$1 \ldots 10 \mathrm{~s}$	0068210
UG 9256.11/101	3AC $200 . . .480 \mathrm{~V}$	2 A	$1 \ldots 10 \mathrm{~s}$	0068040
UG 9256.11/411	3AC $200 . . .480 \mathrm{~V}$	2 A		0067445

Further variants on request

Variant / _ _ 1:
Trigger characteristics
Motor overload protection
Version Key

Application Example

Motor control with UG 9256 and PLC

Motor control with UG 9256 and switch

