CONTRINEX

HF RFID SYSTEM

TRANSPONDER

RTP-0502-062

HOUSING	MEMORY SIZE	MOUNTING
Ø50 mm	2048 Bytes	Non- embeddable

| \checkmark Ultra high temperature HF | \checkmark Insensitive to dirt |
| :--- | :--- | :--- |
| transponder | \checkmark Large usable memory |
| \checkmark Housing with hole for fixing | \checkmark Silicone free solution |
| screw | \checkmark FRAM technology |

GENERAL DATA

Type of integrated circuit	FUJITSU MB89R118C
Carrier frequency	13.56 MHz
Compatible standard	ISO 15693 / ISO 18000-3 (Partly not supported. refer to section NOTE ON USING MB89R118C)
Maximum transmission speed	$53 \mathrm{kbit} / \mathrm{s}$ if fast custom commands are used, $26.5 \mathrm{kbit} / \mathrm{s}$ otherwise
Memory type	FRAM
Memory size	2 kBytes
Read-write distance max.	42 mm with RLS-1303-020 \& 10mm spacer

MEMORY INFORMATION

Organization

User memory (R/W)
Configuration memory
Unique identifier
Data retention period ($<55^{\circ} \mathrm{C}$)
Number of "write" cycles
Number of "read" cycles

256 blocks x 8 Bytes
250 blocks, 2000 Bytes
6 blocks, 48 Bytes
8 Bytes
>30 years
10^{12}
unlimited

MECHANICAL DATA

Protection degree	IP68 \& IP69K
Ambient temperature range TA*	$-25 \ldots+150^{\circ} \mathrm{C}$
Storage temperature range TS** $^{*} \mathrm{C}$	$-40 \ldots+250^{\circ} \mathrm{C}$
Thermal cycling reliability @ $250^{\circ} \mathrm{C}$	1000 cycles $/ 1000$ hours
Housing material	LCP (Liquid Crystal Polymer)
Weight	16.9 g
Tightening torque	max. 1 Nm

* Read/write operations possible
** Data retention and mechanical stability limit

The operating area is highly dependent on the environment.

ENLARGEMENT OF THE OPERATING AREA

The operating area is highly dependent on the environment.

MEMORY OF TRANSPONDERS

The FRAM has a memory capacity of 16384 bits and is divided in two areas. One user area of 250 blocks and one system area of 6 blocks, that means a total of 256 blocks of 8 bytes each. The block is the smallest unit used to read and write the FRAM memory.

FRAM memory configuration

Area	Block No.	Details	Read Access	Write Access
User memory (2000 bytes)	00_{h} to Fg_{h}	User memory	\checkmark	\checkmark
System memory (48 bytes)	FA_{h}	UID (64 bits)	Inv. Cmd	\times
	FB_{h}	AFI, DSFID, EAS, security status	Get System Info Cmd EAS Cmd	Write AFI Cmd Write DSFID Cmd Write EAS Cmd
	FC_{h} to FE_{h}	Block security status	Get Multiple Block Security Status Cmd	Lock Block Cmd (OTP)

User memory Direct read access to blocks of this memory is always possible. Direct write access to blocks of this memory is possible depending on the value of its corresponding block security status bit.
Sytem memory Direct read or write access to blocks of this memory area is not possible
Structure of a single user memory block

MSB							
Byte 7	Byte 6	Byte 5	Byte 4	Byte 3	Byte 2	Byte 1	Byte 0

The 64-bits unique identification number (UID) is programmed during the production process according to ISO/IEC 15693-3 and cannot be changed afterwards. The type of TAG and manufacturer code are part of the UID: bytes 5 and 6 respectively.

Structure of memory block "FA"

SPECIAL FEATURES

AFI, DSFID, and EAS bits are written at the IC manufacturer factory, and can be updated and locked (disable to write) with specific commands. Only EAS bit cannot be locked. The LSB of Byte 7 holds the EAS bit. If the Electronic Article Surveillance is active (LSB = " 1 "), the transponder responds to an EAS command, otherwise it remains silent.

Structure of memory block "FB ${ }_{h}$ "

MSB				LSB	
Byte 7	Byte 6 to Byte 4	Byte 3	Byte 2	Byte 1	Byte 0
EAS Status	RFU	DSFID Lock Status	AFI Lock Status	DSFID	AFI

The security status of the DSFID and AFI Identifier are stored in the Byte 3 and Byte 2 of the system memory blocks "FB" and are OTP (one time programmable).

SECURITY AND PROTECTIONS

The security status of the user memory is stored in the block security status bit located in the system memory blocks "FC ${ }_{h}$ " to " FF_{h} ".
A user memory is unlocked when the corresponding block security status bit is " 0 ". It is locked (disable to write) when the corresponding block security status bit is " 1 ".

The user memory, DSFID and AFI protections are OTP (one time programmable).
Structure of memory block " FC_{h} " to " FF_{h} "

Block No.	MSB			Block Security Status (BSS)											LSB		
	Byte 7								Byte 6 to Byte 1	Byte 0							
FC_{h}	3F	3E	3D	3C	3B	3A	39	38	3	2	1	0	FD_{3}	02	01	00
FD_{h}	7F	7E	7D	7 C	7B	7A	79	78	47	46	45	44	43	42	41	40
FE_{h}	BF	BE	BD	BC	BB	BA	B9	B8	87	86	85	84	83	82	81	80
FF_{h}	RFU (6 bits)						F9	F8	C7	C6	C5	C4	C3	C2	C1	C0

LIST OF COMMANDS

	Command Name	Command Code	Description	RLS-1xxx-	
				x20	320
Mandatory ISO 15693	Inventory	$01_{\text {n }}$	Execute the anti-collision sequence and return UID	\checkmark	\checkmark
	Stay Quiet	$02{ }_{\text {h }}$	Enter the Quiet state	\checkmark	\times
Optional ISO 15693	Read Single Block	$20_{\text {h }}$	Read the requested 1 block data in the user/system memory	\checkmark	\checkmark
	Write Single Block	21.	Write the requested 1 block data in the user memory	\checkmark	\checkmark
	Lock Block	$22_{\text {h }}$	Lock permanently the requested 1 block in the user memory	\checkmark	\times
	Read Multiple Blocks	$23_{\text {h }}$	Read the requested 1 or 2 blocks data in the user memory	\times	x
	Write Multiple Blocks	24 h	Write the requested 1 or 2 blocks data in the user memory	x	x
	Select	$25_{\text {h }}$	Enter the Select state	\checkmark	x
	Reset to ready	26.	Enter the Ready state	\checkmark	x
	Write AFI	$27{ }_{\text {h }}$	Write AFI (Application Family Identifier) value into FRAM	\checkmark	x
	Lock AFI	28 h	Lock permanently AFI value	\checkmark	x
	Write DSFID	$29_{\text {h }}$	Write DSFID (Data Storage Format Identifier) value into FRAM	\checkmark	\times
	Lock DSFID	$2 A_{h}$	Lock permanently DSFID value	\checkmark	x
	Get System Information	$2 B_{h}$	Read the system information value (UID, DSFID, AFI, number of bytes per block, etc)	\checkmark	\times
	Get Multiple Block Security Status	$2 C_{\text {h }}$	Read the block security status stored in system area	\times	x
	-	$2 D_{h}$ to $9 F_{h}$	Reserved for future use	-	x
$\begin{aligned} & \text { Custom } \\ & \text { ISO } 15693 \end{aligned}$	EAS	AO_{h}	When EAS bit is "1", reply response code 6 times	x	x
	Write EAS	A1 ${ }_{\text {h }}$	Write EAS data (1 bit). Data "1" validates anti-theft/ goods-monitoring. Data "0" invalidates them	x	x
	Read Multiple Blocks Unlimited	A5 ${ }_{\text {h }}$	Read the specified data of up to 256 blocks in the user/ system memory at once	\times	x
	Fast Inventory	$B 1{ }_{\text {h }}$	Fast response Inventory command	x	x
	Fast Read Single Block	CO_{h}	Fast response Read Single Block command	x	x
	Fast Write Single Block	$\mathrm{C} 1_{\text {h }}$	Fast response Write Single Block command	x	x
	Fast Read Multiple Blocks	C3 ${ }_{\text {h }}$	Fast response Read Multiple Blocks command	x	x
	Fast Write Multiple Blocks	C4 ${ }_{\text {h }}$	Fast response Write Multiple Blocks command	x	x
	Fast Write EAS	D1 ${ }_{\text {h }}$	Fast response Write EAS command	\times	x
	Fast Read Multiple Blocks Unlimited	D5 ${ }_{\text {h }}$	Fast response Read Multiple Blocks Unlimited command	\times	x

NOTES ON USING MB89R118C

Parameter	ISO/IEC 15693 Specification	MB89R118C
Data coding	1 out of 256	Not correspondance
Subcarrier	2-subcarrier	Not correspondance
Optional command	Read Multiple Blocks command	Correspondance up to 2 blocks

The above table presents the discrepancies between the IC MB89R118C and the ISO/IEC 15693 standard.

AVAILABLE TYPES

Part number	Part reference	\varnothing	Mounting
$720-000-205$	RTP-0502-062	50 mm	Non-embeddable

